Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJPM Focus ; 1(1): 100014, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36338466

RESUMO

Introduction: Fitted filtration performance of an N95 respirator may benefit from differing levels of instructions. Methods: Using a modified Occupational Safety and Health Administration fit test protocol, we measured fitted filtration efficiency for an N95 respirator in 21 screened, healthy participants given 4 levels of escalating instruction: (1) uninstructed (baseline), (2) written/pictorial manufacturer instructions, (3) step-by-step video demonstration, and (4) staff instruction (visual inspection of respirator fit and verbal suggestions to adjust when applicable). Results: Baseline fitted filtration efficiency was not significantly different between participants with or without previous experience of N95 use. Clear improvements in fitted filtration efficiency were observed progressing from baseline (average=86.1%) to manufacturer paper instructions (93.3%), video instructions (97.5%), and post staff intervention (98.3%). Baseline fitted filtration efficiency values were significantly lower than those after video instruction (p<0.037) and staff intervention (p<0.033) sessions. Conclusions: Beyond uninstructed wear or provision of manufacturer instructions, efforts to train and instruct users in proper respirator fit principles with visual feedback are likely to yield benefits to public health outcomes in reducing respiratory exposure during air quality emergencies such as airborne viral outbreaks and wildland fires.

2.
Environ Int ; 167: 107407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850080

RESUMO

BACKGROUND: Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS: Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS: Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION: FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/farmacologia , Feminino , Óleos de Peixe/farmacologia , Humanos , Pulmão , Masculino , Ozônio/efeitos adversos , Testes de Função Respiratória
3.
Part Fibre Toxicol ; 17(1): 58, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198760

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS: To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 µg/m3, SD 6.5), and filtered air (mean: 2.1 µg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS: Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 µg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS: This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION: clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Sistema Cardiovascular/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Adulto , Biomarcadores , Estudos Cross-Over , Método Duplo-Cego , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Adulto Jovem
4.
Free Radic Res ; 52(2): 267-272, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29343136

RESUMO

Heme oxygenase (HO) is an essential, rate-limiting protein which catalyses the breakdown of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge of the heme is eliminated as CO which can be measured as blood carboxyhaemoglobin (COHb). Using blood concentrations of COHb as a measure reflecting HO activity, we tested the postulate that the activity of HO changes with exercise. Ten healthy, nonsmoking volunteers (5 females and 5 males with a mean age ± standard deviation of 25.7 ± 3.2 years), lifetime nonsmokers with no history of respiratory diseases and not taking any medication, were included in the study. Subjects were exposed to filtered air for 2 hrs while alternating exercise for 15 minutes on a cycle ergometer with rest for 15 minutes. Workload was adjusted so that subjects breathed at a ventilatory rate, normalised for body surface area, of 25 L/m2/minute. Immediately before, immediately after, and the day following exercise, blood was drawn by standard venipuncture technique. COHb was determined using the interleukin (IL) 682 Co-Oximeter (Instrumentation Laboratory, Bedford, MA). COHb increased in each participant during the exercise session with the mean value (± standard deviation) almost doubling (1.1 ± 1.6 to 2.1 ± 1.6%) and returned to baseline by the following day (1.3 ± 1.3%). We conclude that exercise increases HO activity.


Assuntos
Exercício Físico , Regulação da Expressão Gênica , Heme Oxigenase (Desciclizante)/metabolismo , Adulto , Feminino , Voluntários Saudáveis , Heme Oxigenase (Desciclizante)/genética , Humanos , Masculino , Adulto Jovem
5.
Environ Health Perspect ; 123(11): 1173-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25933197

RESUMO

BACKGROUND: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. OBJECTIVE: In this study we evaluated the potential efficacy of OO and FO in mitigating endothelial dysfunction and disruption of hemostasis caused by exposure to particulate matter (PM). METHODS AND RESULTS: Forty-two participants (58 ± 1 years of age) received either 3 g/day of OO or FO, or no supplements (naive) for 4 weeks prior to undergoing 2-hr exposures to filtered air and concentrated ambient particulate matter (CAP; mean, 253 ± 16 µg/m3). Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery preexposure, immediately postexposure, and 20 hr postexposure. Levels of endothelin-1 and markers of fibrinolysis and inflammation were also measured. The FMD was significantly lower after CAP exposure in the naive (-19.4%; 95% CI: -36.4, -2.3 per 100 µg/m3 CAP relative to baseline; p = 0.03) and FO groups (-13.7%; 95% CI: -24.5, -2.9; p = 0.01), but not in the OO group (-7.6%; 95% CI: -21.5, 6.3; p = 0.27). Tissue plasminogen activator levels were significantly increased immediately after (11.6%; 95% CI: 0.8, 22.2; p = 0.04) and 20 hr after CAP exposure in the OO group. Endothelin-1 levels were significantly increased 20 hr after CAP exposure in the naive group only (17.1%; 95% CI: 2.2, 32.0; p = 0.03). CONCLUSIONS: Short-term exposure to CAP induced vascular endothelial dysfunction. OO supplementation attenuated CAP-induced reduction of FMD and changes in blood markers associated with vasoconstriction and fibrinolysis, suggesting that OO supplementation may be an efficacious intervention to protect against vascular effects of exposure to PM. CITATION: Tong H, Rappold AG, Caughey M, Hinderliter AL, Bassett M, Montilla T, Case MW, Berntsen J, Bromberg PA, Cascio WE, Diaz-Sanchez D, Devlin RB, Samet JM. 2015. Dietary supplementation with olive oil or fish oil and vascular effects of concentrated ambient particulate matter exposure in human volunteers. Environ Health Perspect 123:1173-1179; http://dx.doi.org/10.1289/ehp.1408988.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Óleos de Peixe/administração & dosagem , Azeite de Oliva/administração & dosagem , Material Particulado/efeitos adversos , Idoso , Velocidade do Fluxo Sanguíneo , Artéria Braquial/fisiologia , Suplementos Nutricionais , Endotelina-1/análise , Endotélio Vascular/fisiologia , Feminino , Fibrinólise , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Ativador de Plasminogênio Tecidual/análise , Vasodilatação/fisiologia
6.
Environ Health Perspect ; 123(4): 310-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25514459

RESUMO

BACKGROUND: Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbidity and mortality and can reduce lung function and alter systemic markers of fibrinolysis. The interaction between ozone and temperature is unclear. METHODS: Sixteen healthy volunteers were exposed in a randomized crossover study to 0.3 ppm ozone and clean air for 2 hr at moderate (22°C) temperature and again at an elevated temperature (32.5°C). In each case lung function was performed and blood taken before and immediately after exposure and the next morning. RESULTS: Ozone exposure at 22°C resulted in a decrease in markers of fibrinolysis the next day. There was a 51.8% net decrease in PAI-1 (plasminogen activator inhibitor-1), a 12.1% net decrease in plasminogen, and a 17.8% net increase in D-dimer. These significantly differed from the response at 32.5°C, where there was a 44.9% (p = 0.002) and a 27.9% (p = 0.001) increase in PAI-1 and plasminogen, respectively, and a 12.5% (p = 0.042) decrease in D-dimer. In contrast, decrements in lung function following ozone exposure were comparable at both moderate and elevated temperatures (forced expiratory volume in 1 sec, -12.4% vs. -7.5%, p > 0.05). No changes in systemic markers of inflammation were observed for either temperature. CONCLUSION: Ozone-induced systemic but not respiratory effects varied according to temperature. Our study suggests that at moderate temperature ozone may activate the fibrinolytic pathway, while at elevated temperature ozone may impair it. These findings provide a biological basis for the interaction between temperature and ozone on mortality observed in some epidemiologic studies.


Assuntos
Coagulação Sanguínea , Fibrinólise , Ozônio/efeitos adversos , Temperatura , Adulto , Poluentes Atmosféricos/toxicidade , Biomarcadores/análise , Estudos Cross-Over , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/efeitos dos fármacos , Volume Expiratório Forçado , Humanos , Inflamação/metabolismo , Masculino , Fenômenos Fisiológicos Respiratórios
7.
Toxicol Sci ; 99(2): 432-45, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17656487

RESUMO

Exposure to bromodichloromethane (BDCM), one of the most prevalent disinfection byproducts in drinking water, can occur via ingestion of water and by dermal absorption and inhalation during activities such as bathing and showering. The objectives of this research were to assess BDCM pharmacokinetics in human volunteers exposed percutaneously and orally to (13)C-BDCM and to evaluate factors that could affect disposition of BDCM. Among study subjects, CYP2E1 activity varied fourfold; 20% had the glutathione S-transferase theta 1-1 homozygous null genotype; and body fat ranged from 7 to 22%. Subjects were exposed to (13)C-BDCM in water (target concentration of 36 mug/l) via ingestion and by forearm submersion. Blood was collected for up to 24 h and analyzed for (13)C-BDCM by solid-phase microextraction and high-resolution GC-MS. Urine was collected before and after exposure for mutagenicity determinations in Salmonella. After ingestion (mean dose = 146 ng/kg), blood (13)C-BDCM concentrations peaked and declined rapidly, returning to levels near or below the limit of detection (LOD) within 4 h. The T(max) for the oral exposure ranged from 5 to 30 min, and the C(max) ranged from 0.4 to 4.1 ng/l. After the 1 h dermal exposure (estimated mean dose = 155 ng/kg), blood concentrations of (13)C-BDCM ranged from 39 to 170 ng/l and decreased to levels near or below the LOD by 24 h. Peak postdose urine mutagenicity levels that were at least twice that of the predose mean level occurred in 6 of 10 percutaneously exposed subjects and 3 of 8 orally exposed subjects. These results demonstrate a highly significant contribution of dermal absorption to circulating levels of BDCM and confirm the much lower oral contribution, indicating that water uses involving dermal contact can lead to much greater systemic BDCM doses than water ingestion. These data will facilitate development and validation of physiologically based pharmacokinetic models for BDCM in humans.


Assuntos
Administração Cutânea , Administração Oral , Área Sob a Curva , Citocromo P-450 CYP2E1/fisiologia , Glutationa Transferase/fisiologia , Meia-Vida , Humanos , Modelos Biológicos , Trialometanos/administração & dosagem , Trialometanos/farmacocinética
8.
Behav Processes ; 64(1): 121-129, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12915002

RESUMO

Animal models of human cognitive processes are essential for studying the neurobiological mechanisms of these processes and for developing therapies for intoxication and neurodegenerative diseases. A discrete-trial signal detection task was developed for assessing sustained attention in rats; a previous study showed that rats perform as predicted from the human sustained attention literature. In this study, we measured the behavior of humans in a task formally homologous to the task for rats, varying two of the three parameters previously shown to affect performance in rats. Signal quality was manipulated by varying the increment in the intensity of a lamp. Trial rate was varied among values of 4, 7, and 10 trials/min. Accuracy of signal detection was quantified by the proportion of correct detections of the signal (P(hit)) and the proportion of false alarms (P(fa), i.e. incorrect responses on non-signal trials). As with rats, P(hit) in humans increased with increasing signal intensity whereas P(fa) did not. Like rats, humans were sensitive to the trial rate, though the change in behavior depended on the sex of the subject. These data show that visual signal detection behavior in rats and humans is controlled similarly by two important parameters, and suggest that this task assesses similar processes of sustained attention in the two species.

9.
J Pharmacol Toxicol Methods ; 47(3): 189-95, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12628310

RESUMO

INTRODUCTION: In order to investigate the pharmacokinetics of water-borne chemicals while eliminating exposures by other routes, a dermal exposure system was developed to expose the hand and forearm of human subjects. METHODS: The goal was, primarily, to study the dermal pharmacokinetics of methyl tertiary butyl ether (MTBE), a water contaminant, and, secondarily, the ambient disinfection byproducts (DBPs). MTBE is used as a fuel oxygenate and DBPs result from chlorination of drinking water. The DBPs measured in the water and blood of the subjects were chloroform, bromodichloromethane, and dibromochloromethane. The dermal exposure system was constructed of inert and impervious materials. The interface between the glass and Teflon exposure tank and the subject was custom-made of clear Tedlar (polyvinylfluoride) so that the depth of the arm in the media could be monitored. RESULTS: Sampling of the water concentration of the test chemical, MTBE, demonstrated stability over the duration of the exposure. A temperature loss of about 1.5 degrees C occurred over the course of the 1-h exposure. Blood concentrations taken from 14 human subjects before, during, and after the 1-h exposure demonstrated that measurable MTBE and DBPs were absorbed. DISCUSSION: This system has the advantages of maintaining contaminant concentration and exposing an anatomically distinct body region, and the convenience of blood sampling.


Assuntos
Compostos Clorados/farmacocinética , Éteres Metílicos/farmacocinética , Absorção Cutânea , Solventes/farmacocinética , Poluentes Químicos da Água/farmacocinética , Administração Cutânea , Adulto , Compostos Clorados/administração & dosagem , Desinfetantes/análise , Desinfetantes/metabolismo , Desinfecção , Exposição Ambiental/análise , Humanos , Masculino , Éteres Metílicos/administração & dosagem , Solventes/administração & dosagem , Poluentes Químicos da Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...